Steeds meer wetenschappers tonen aan dat de coronavaccins van Pfizer vervuild zijn met DNA-deeltjes, schrijft De Andere Krant.
De Amerikaanse wetenschapper Kevin McKernan bracht afgelopen april een schok teweeg toen hij concludeerde dat de mRNA-vaccins meer DNA-deeltjes bevatten dan de regelgevende instanties toestaan.
Intussen hebben drie andere onderzoekers onafhankelijk van elkaar ontelbare DNA-deeltjes gevonden in Pfizer-vaccins: Sin Hang Lee, de Duitse professor Brigitte König en de Amerikaanse professor Philip Buckhaults.
Problemen alleen maar groter
Laatstgenoemde wilde het in eerste instantie niet geloven, maar tot zijn schrik vond ook hij ontelbare DNA-deeltjes in twee batches Pfizer-vaccins die hij bij een apotheker haalde.
Buckhaults zei dat Pfizer het DNA in kleine stukjes had gehakt, in de hoop dat ze zouden verdwijnen. De farmareus maakte de problemen alleen maar groter, omdat hierdoor het risico op integratie in het menselijk genoom toeneemt.
Volgens hem kunnen de DNA-deeltjes bijdragen aan hartstilstanden, auto-immuunproblemen en kanker.
Wat zou er in vredesnaam verkeerd kunnen gaan?
Het onderzoek van McKernan is beschikbaar als officiële pre-print. Nu nog een tijdschrift zien te vinden dat het lef heeft om het te publiceren, merkt neuroloog Jan Bonte op. Waarop arts David Van Deinse zegt: “Mag niet gepubliceerd worden. De commissie nepnieuws bestaande uit onkundigen zal dit desinformatie noemen.”
In elke dosis van de mRNA-vaccins van Pfizer en Moderna blijken miljarden tot tientallen miljarden stukjes DNA te zitten.
“Nu alleen nog aantonen dat deze stukjes inderdaad geïntegreerd worden in het DNA,” aldus Bonte. “Als ik nu aan alle brulvaxxers denk, kan ik een cynisch glimlachje niet onderdrukken. Voor die mensen geldt: geen leuker vermaak dan leedvermaak. Wat zou er in vredesnaam verkeerd kunnen gaan?”
DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and
Moderna modRNA COVID-19 vaccines from Ontario, Canada: Exploratory dose
response relationship with serious adverse events.
WEB SITE article: https://osf.io/mjc97/
PDF DOWNLOAD : https://osf.io/mjc97/download
AUTHORS
·
Jessica Rose
·
L. Maria Gutschi
Abstract
Background: In vitro transcription (IVT) reactions
used to generate nucleoside modified RNA (modRNA) for SARS-CoV-2 vaccines
currently rely on an RNA polymerase transcribing from a DNA template.
Production of modRNA used in the original Pfizer randomized clinical trial
(RCT) utilized a PCR-generated DNA template (Process 1). To generate billions
of vaccine doses, this DNA was cloned into a bacterial plasmid vector for
amplification in Escherichia coli before linearization (Process 2), expanding
the size and complexity of potential residual DNA and introducing sequences not
present in the Process 1 template. It appears that Moderna used a similar
plasmid-based process for both clinical trial and post-trial use vaccines.
Recently, DNA sequencing studies have revealed this plasmid DNA at significant
levels in both Pfizer-BioNTech and Moderna modRNA vaccines. These studies
surveyed a limited number of lots and questions remain regarding the variance
in residual DNA observed internationally.
Methods: Using previously
published primer and probe sequences, quantitative polymerase chain reaction
(qPCR) and Qubit® fluorometry was performed on an additional 27 mRNA vials
obtained in Canada and drawn from 12 unique lots (5 lots of Moderna child/adult
monovalent, 1 lot of Moderna adult bivalent BA.4/5, 1 lot of Moderna
child/adult bivalent BA.1, 1 lot of Moderna XBB.1.5 monovalent, 3 lots of
Pfizer adult monovalent, and 1 lot of Pfizer adult bivalent BA.4/5). The
Vaccine Adverse Events Reporting System (VAERS) database was queried for the
number and categorization of adverse events (AEs) reported for each of the lots
tested. The content of one previously studied vial of Pfizer COVID-19 vaccine
was examined by Oxford Nanopore sequencing to determine the size distribution of
DNA fragments. This sample was also used to determine if the residual DNA is
packaged in the lipid nanoparticles (LNPs) and thus resistant to DNaseI or if
the DNA resides outside of the LNP and is DNaseI labile.
Results: Quantification
cycle (Cq) values (1:10 dilution) for the plasmid origin of replication (ori)
and spike sequences ranged from 18.44 - 24.87 and 18.03 - 23.83 and for Pfizer,
and 22.52 – 24.53 and 25.24 – 30.10 for Moderna, respectively. These values
correspond to 0.28 – 4.27 ng/dose and 0.22 - 2.43 ng/dose (Pfizer), and 0.01
-0.34 ng/dose and 0.25 – 0.78 ng/dose (Moderna), for ori and spike respectively
measured by qPCR, and 1,896 – 3,720 ng/dose and 3,270 – 5,100 ng/dose measured
by Qubit® fluorometry for Pfizer and Moderna, respectfully. The SV40
promoter-enhancer-ori was only detected in Pfizer vials with Cq scores ranging
from 16.64 – 22.59. In an exploratory analysis, we found preliminary evidence
of a dose response relationship of the amount of DNA per dose and the frequency
of serious adverse events (SAEs). This relationship was different for the
Pfizer and Moderna products. Size distribution analysis found mean and maximum
DNA fragment lengths of 214 base pairs (bp) and 3.5 kb, respectively. The
plasmid DNA is likely inside the LNPs and is protected from nucleases.
Conclusion: These data demonstrate the presence of billions to hundreds of billions
of DNA molecules per dose in these vaccines. Using fluorometry, all vaccines
exceed the guidelines for residual DNA set by FDA and WHO of 10 ng/dose by 188
– 509-fold. However, qPCR residual DNA content in all vaccines were below these
guidelines emphasizing the importance of methodological clarity and consistency
when interpreting quantitative guidelines. The preliminary evidence of a dose-response
effect of residual DNA measured with qPCR and SAEs warrant confirmation and
further investigation. Our findings extend existing concerns about vaccine
safety and call into question the relevance of guidelines conceived before the
introduction of efficient transfection using LNPs. With several obvious
limitations, we urge that our work is replicated under forensic conditions and
that guidelines be revised to account for highly efficient DNA transfection and
cumulative dosing.